
Event Watcher Manual

Welcome to the Event Watcher User Manual
Whether you are new to Event Watcher or an advanced user, you can find some useful information here.

In this guide, you'll learn how to:

Install extension
Quick Start:

Create first Channel
Create first Recipient
Create first Notification

How to install the extension
1. Backup your store database and web directory.
2. Login to SSH console on your server and navigate to the root directory of the Magento 2 store.
3. Copy installation instructions from the page My Downloadable Products to SSH console and press

ENTER.
4. Run command php -f bin/magento module:enable Mirasvit_Core

Mirasvit_Event Mirasvit_Mq Mirasvit_Notificator to enable extension.
5. Run command php -f bin/magento setup:upgrade to install extension.
6. Run command php -f bin/magento cache:clean for clean cache.

7. Deploy static view files

php -f bin/magento setup:static-content:deploy

Note

If you install the module manually to the "app/code/" directory, additionally install the required
liquid/liquid and messengers' API libraries through composer:
composer require "liquid/liquid:^1.3" "irazasyed/telegram-bot-sdk:^2.2"
"maknz/slack:^1.7"

General Settings
Go to System -> Event Watcher and Notification -> Settings. You will see the following settings:

https://mirasvit.com/lc/customer/products/

Events

Allowed Error Level - allows you to select registered error levels by the extension.

Note

The Error event has multiple levels, the low-level errors (Debug, Info, Notice, Warning) generate too
many records that are registered by our extension and stored in the DB table mst_event_event.
Therefore in order to avoid the fast overflow of this table, we recommend you to observe only high
priority error levels.

Setting Up a Channel
Channel is a medium used for communication or the passage of information to the target recipient or a group
of recipients.

Out of the box, our extension provides 3 channels:

1. Email - allows you to receive regular messages through your mail client.
2. Slack - is a corporate messenger. It can be very useful to print some urgent messages to certain channels

in order to inform responsible persons or the whole team about some event.
3. Telegram - as Slack, Telegram is also a cloud-based cross-platform messaging app. It will always keep

you posted.

How to Create New Channel

To create a new channel follow these steps:

1. Go to System > Event Watcher and Notification > Manage Channels. Press the button Add New
Channel.

2. Fill in the following settings:
Title - the name of a channel.
Is Active - activate a channel.
Channel Type - select desired channel type.

3. Finally, fill in channel-specific settings. For more information, refer to the concrete channel details page.
4. Press Save to complete.

How to establish Email Channel

How to establish Slack Channel

To use Slack, you need to create an incoming webhook. You can create it on your Slack account following this
instruction.

https://my.slack.com/services/new/incoming-webhook

Additionally, you can specify the following fields:

1. Username - used as a name for the bot publishing the messages.
2. Icon - used as an avatar for your bot.
3. Channel - a Slack channel to send text messages to, including the leading hashtag character, e.g.,

#general

To verify a connection, you can send a test message which will be published in the default channel specified
when creating an Incoming WebHook or to the channel specified in the settings.

How to establish Telegram Channel

To use Telegram, you need to obtain a bot token. To get a Bot Token, you should create a bot first. For this
follow the steps below:

1. Find the BotFarther, talk to it, and follow a few simple steps.
2. Upon completion, you will get an HTTP API token, which you should copy to the Bot Token field in

the channel settings.
3. In the end, you should start a chat with your bot to activate it.

To get a Chat ID follow the steps below:

1. Find and start a chat with the GetId Bot.
2. To get a Chat ID, send the /my_id to the telegram bot @get_id_bot.

You can also publish messages to a group chat. To get a Group Chat ID follow the steps below:

1. Find the GetId Bot.
2. Add the @get_id_bot to the group you want to send messages to.
3. Then send /my_group_id in the group (group chat ID starts with a dash symbol). To send messages

to a group, you should invite your bot (whose token is used for the channel) to the required group in
Telegram.

To verify the connection, you can send a test message which will be published in the chat specified in the
settings.

https://telegram.me/botfather
https://telegram.me/get_id_bot
https://telegram.me/get_id_bot

Setting Up a Channel
Channel is a medium used for communication or the passage of information to the target recipient or a group
of recipients.

Out of the box, our extension provides 3 channels:

1. Email - allows you to receive regular messages through your mail client.
2. Slack - is a corporate messenger. It can be very useful to print some urgent messages to certain channels

in order to inform responsible persons or the whole team about some event.
3. Telegram - as Slack, Telegram is also a cloud-based cross-platform messaging app. It will always keep

you posted.

How to Create New Channel

To create a new channel follow these steps:

1. Go to System > Event Watcher and Notification > Manage Channels. Press the button Add New
Channel.

2. Fill in the following settings:
Title - the name of a channel.
Is Active - activate a channel.
Channel Type - select desired channel type.

3. Finally, fill in channel-specific settings. For more information, refer to the concrete channel details page.
4. Press Save to complete.

How to establish Email Channel

How to establish Slack Channel

To use Slack, you need to create an incoming webhook. You can create it on your Slack account following this
instruction.

Additionally, you can specify the following fields:

1. Username - used as a name for the bot publishing the messages.
2. Icon - used as an avatar for your bot.
3. Channel - a Slack channel to send text messages to, including the leading hashtag character, e.g.,

#general

To verify a connection, you can send a test message which will be published in the default channel specified
when creating an Incoming WebHook or to the channel specified in the settings.

https://my.slack.com/services/new/incoming-webhook

How to establish Telegram Channel

To use Telegram, you need to obtain a bot token. To get a Bot Token, you should create a bot first. For this
follow the steps below:

1. Find the BotFarther, talk to it, and follow a few simple steps.
2. Upon completion, you will get an HTTP API token, which you should copy to the Bot Token field in

the channel settings.
3. In the end, you should start a chat with your bot to activate it.

To get a Chat ID follow the steps below:

1. Find and start a chat with the GetId Bot.
2. To get a Chat ID, send the /my_id to the telegram bot @get_id_bot.

You can also publish messages to a group chat. To get a Group Chat ID follow the steps below:

1. Find the GetId Bot.
2. Add the @get_id_bot to the group you want to send messages to.
3. Then send /my_group_id in the group (group chat ID starts with a dash symbol). To send messages

to a group, you should invite your bot (whose token is used for the channel) to the required group in
Telegram.

To verify the connection, you can send a test message which will be published in the chat specified in the
settings.

https://telegram.me/botfather
https://telegram.me/get_id_bot
https://telegram.me/get_id_bot

Setting Up a Channel
Channel is a medium used for communication or the passage of information to the target recipient or a group
of recipients.

Out of the box, our extension provides 3 channels:

1. Email - allows you to receive regular messages through your mail client.
2. Slack - is a corporate messenger. It can be very useful to print some urgent messages to certain channels

in order to inform responsible persons or the whole team about some event.
3. Telegram - as Slack, Telegram is also a cloud-based cross-platform messaging app. It will always keep

you posted.

How to Create New Channel

To create a new channel follow these steps:

1. Go to System > Event Watcher and Notification > Manage Channels. Press the button Add New
Channel.

2. Fill in the following settings:
Title - the name of a channel.
Is Active - activate a channel.
Channel Type - select desired channel type.

3. Finally, fill in channel-specific settings. For more information, refer to the concrete channel details page.
4. Press Save to complete.

How to establish Email Channel

How to establish Slack Channel

To use Slack, you need to create an incoming webhook. You can create it on your Slack account following this
instruction.

Additionally, you can specify the following fields:

1. Username - used as a name for the bot publishing the messages.
2. Icon - used as an avatar for your bot.
3. Channel - a Slack channel to send text messages to, including the leading hashtag character, e.g.,

#general

To verify a connection, you can send a test message which will be published in the default channel specified
when creating an Incoming WebHook or to the channel specified in the settings.

https://my.slack.com/services/new/incoming-webhook

How to establish Telegram Channel

To use Telegram, you need to obtain a bot token. To get a Bot Token, you should create a bot first. For this
follow the steps below:

1. Find the BotFarther, talk to it, and follow a few simple steps.
2. Upon completion, you will get an HTTP API token, which you should copy to the Bot Token field in

the channel settings.
3. In the end, you should start a chat with your bot to activate it.

To get a Chat ID follow the steps below:

1. Find and start a chat with the GetId Bot.
2. To get a Chat ID, send the /my_id to the telegram bot @get_id_bot.

You can also publish messages to a group chat. To get a Group Chat ID follow the steps below:

1. Find the GetId Bot.
2. Add the @get_id_bot to the group you want to send messages to.
3. Then send /my_group_id in the group (group chat ID starts with a dash symbol). To send messages

to a group, you should invite your bot (whose token is used for the channel) to the required group in
Telegram.

To verify the connection, you can send a test message which will be published in the chat specified in the
settings.

https://telegram.me/botfather
https://telegram.me/get_id_bot
https://telegram.me/get_id_bot

Setting Up a Channel
Channel is a medium used for communication or the passage of information to the target recipient or a group
of recipients.

Out of the box, our extension provides 3 channels:

1. Email - allows you to receive regular messages through your mail client.
2. Slack - is a corporate messenger. It can be very useful to print some urgent messages to certain channels

in order to inform responsible persons or the whole team about some event.
3. Telegram - as Slack, Telegram is also a cloud-based cross-platform messaging app. It will always keep

you posted.

How to Create New Channel

To create a new channel follow these steps:

1. Go to System > Event Watcher and Notification > Manage Channels. Press the button Add New
Channel.

2. Fill in the following settings:
Title - the name of a channel.
Is Active - activate a channel.
Channel Type - select desired channel type.

3. Finally, fill in channel-specific settings. For more information, refer to the concrete channel details page.
4. Press Save to complete.

How to establish Email Channel

How to establish Slack Channel

To use Slack, you need to create an incoming webhook. You can create it on your Slack account following this
instruction.

Additionally, you can specify the following fields:

1. Username - used as a name for the bot publishing the messages.
2. Icon - used as an avatar for your bot.
3. Channel - a Slack channel to send text messages to, including the leading hashtag character, e.g.,

#general

To verify a connection, you can send a test message which will be published in the default channel specified
when creating an Incoming WebHook or to the channel specified in the settings.

https://my.slack.com/services/new/incoming-webhook

How to establish Telegram Channel

To use Telegram, you need to obtain a bot token. To get a Bot Token, you should create a bot first. For this
follow the steps below:

1. Find the BotFarther, talk to it, and follow a few simple steps.
2. Upon completion, you will get an HTTP API token, which you should copy to the Bot Token field in

the channel settings.
3. In the end, you should start a chat with your bot to activate it.

To get a Chat ID follow the steps below:

1. Find and start a chat with the GetId Bot.
2. To get a Chat ID, send the /my_id to the telegram bot @get_id_bot.

You can also publish messages to a group chat. To get a Group Chat ID follow the steps below:

1. Find the GetId Bot.
2. Add the @get_id_bot to the group you want to send messages to.
3. Then send /my_group_id in the group (group chat ID starts with a dash symbol). To send messages

to a group, you should invite your bot (whose token is used for the channel) to the required group in
Telegram.

To verify the connection, you can send a test message which will be published in the chat specified in the
settings.

https://telegram.me/botfather
https://telegram.me/get_id_bot
https://telegram.me/get_id_bot

Setting Up a Recipient
Recipient is a target person who will receive the messages sent by notification.

To create a new channel follow these steps:

1. Go to System > Event Watcher and Notification > Manage Recipients. Press button Add New
Recipient.

2. Fill in the following settings:
General Information:

Name - name of trigger.
First Name - recipient first name.
Last Name - recipient last name.

3. Specify the channel details associated with this recipient:
Channel - select one of the available channels.
Address - specify the channel-specific address. For example:

Slack Address - Slack channel starting with leading hash: #general.
Telegram Address - here you should enter the Telegram Chat ID: 223151425.
Email Address - use an email address of the desired recipient: john_doe@example.com

Setting Up a Notification
Notification purpose is to send messages to the specified recipients when some certain event has occurred in
your system.

In this context, an event is the certain action of a visitor of your site (e.g., login, registration, placing an order)
or an action of a system (e.g., change order status, cron job execution).

All notifications are located at System -> Event Watcher and Notification -> Manage Notifications section.
There you can edit existing notification, or create a new one.

Event watcher & notification for Magento 2 works for different store views.

How to Create New Notification

Visit System -> Event Watchers -> Manage Notifications and press Add New Notification button to open
creation page. It breaks into two subsequent stages:

1. On the first stage, you need to configure general settings:
Title - name of a notification.
Is Active - activate a notification.
Event - an event which should trigger a notification. They are grouped in the drop-down menu.
Select it and press Continue to proceed to the next stage.

Note
After you had selected the Event, it can not be undone later. You will need to create a new
notification, bound to another event.

2. On the second stage, you need to configure details, which break into two sections:
Notification Details

Recipient - select recipient of a notification.
Notification Template - select existing template or create a new one by editing an existing.
Do not send more than - here you can limit the number of sent messages within a specified
number of minutes. Messages, which exceed this limit will be muted.

Conditions: It allows you to send messages only if the selected conditions are met for the target
event.

3. Make sure that rules are activated and press Save to complete.

Adding Conditions to Notifications

Each notification has Conditions section, where you can set conditions that define when notification should be
sent.

All conditionals should be enclosed in the global mode block. They have four possible global modes of
applying, shown in special header If *[apply mode]* of these conditions are
[validation mode]:

Applying modes define, when rule shall be triggered:

ALL - implies, that rule will be executed only when strictly all conditions were met;
ANY - implies, that rule will be executed only when one or more (but not all) of conditions were met;

Validation modes define, which result can produce each condition to be counted as "met":

TRUE - implies. that conditions should be valid.
FALSE - implies, that conditions should be invalid.

You can also define multiple nested mode blocks by selecting the Conditions Combination option. These
modes allow creating flexible condition sets to satisfy a policy of any complexity.

Once you had selected global mode (or left it as default), press the green (+) button, and pick up a condition
type.

There are many possible conditions, which depend on the every Event field. Here is their list, depending on
event types:

Customer

Is Confirmed - whether the customer is confirmed.
Created At - where the customer was created.
Associate to Website - to which Website customer is associated.
Create In - at which Store customer is registered.
Group - to which Group customer belongs.
Personal Information - such as Gender, First Name, Last Name, Email, Date of Birth and so
on.
Billing and Shipping Addresses - these conditions work with multiline text address
representation, so use contains and does not contain operators for it.
Failures Number - number of last tried failures to login (counts as errors before successful login,
or last fail attempt).
First Failure Date - date of first registered login failure.
Lifetime Sales - total amount, paid for all orders, placed by a customer, and completed.
Average Sales - average amount, which customer pays per order.
Number of Orders - the number of orders that the customer had placed and completed.
Last Activity - checks the last date of customer visit and returns the number of full days from that
date.

Store

Lifetime Sales - total amount, paid for of all orders in the current store.
Number of Orders - the number of all completed orders in the current store.

Admin (User)

Personal Information - such as Username, First Name and Last Name.
Is Active - whether the current admin user is active.
Number of Logins - total number of successful logins of the current user.
Last Login Date - date of the last login of the current user.
number of failed logins - total number of failed logins of the current user.
Admin IP - IP address, from which admin user has been registered.
Is Admin Logged In from a New IP - a special flag, which is set only when an admin user is
logged from IP, other than he used for registration.

Schedule

Job Code - identifier, set as name attribute for <job> tag in /etc/crontab.xml config file
of the module.

Example

Job Code for Message Queue processing task would be mq_process, and can be seen in
/vendor/mirasvit/module-message-queue/src/Mq/etc/crontab.xml config.
Status - the status of the job at the time of cron check. There are the following options available:

Pending - used when the job was just scheduled for execution.
Running - used when the job is running now
Error - used when the job was terminated unexpectedly.
Missed - used, when the job was not executed (for example, queue waiting time was over).
Success - used when the job was executed successfully.

Message - text condition, which allows you to check job results. Use contains and does not
contain operators.
Time Frame Information - such as Created At, Scheduled At, Executed At and Finished At.
Finished Ago - allows to check, how many minutes ago was finished last cron task. Used in
combination with Code to check when was certain task was last executed.
Run Time - allows to check, how much time cron task has consumed.
Last heartbeat time - allows to check, how many minutes ago was executed so-called heartbeat
task. It runs each time with cron started, so using this condition, you can check whether cron
actually runs.

Product

These conditions are used in events of the following event groups: Customer, Shopping Cart, Wishlist,
Review. They break into two large categories:

Product - contains all attributes, defined at Stores -> Attributes -> Product.
Additional Product Conditions - contains two shortcuts, which allow you to track sales of your
top products:

Newest Products is a shortcut to Product is one of [X] most recently
added products is [Yes/No] expression, where X is limit of newly added products
list to check.

Example

If you need to know whether one of your 10 newest products was bought, you need
condition Product is one of 10 most recently added products is
Yes.
Top Selling Products - is a shortcut to Product is one of [X] top selling
products is [Yes/No], where X is also a limit for a list of top-performing products
to check.

Example

Likewise - if you need to know whether one of your top 10 products was bought, you need
condition Product is one of 10 top-selling products is Yes.

Product Special Block

There are two special options used in conditions:

Product Subselection - opens a special block If [ALL/ANY] products in
cart/order matching these conditions:, which can contain one or more Products
condition from category above

This block simplifies complex conditions and makes conditions more logical and readable.
Product Attribute Value Comparison - opens a special block If [Comparison Mode]
[Constant] of [Selection Mode] [Attribute] found while ALL of
these conditions match, which also can contain one or more Products condition from
category above.

This block is quite complex. It allows you to create a collection of products using Products
conditionals. Then, using Selection Mode options Same and Different, you can pick up an
Attribute and compare that attribute value to some Constant. There are three possible
Comparison Modes: Equal To, More than, and Less Than.

Refer to the Examples section to know how these blocks can be properly used.

Shipping Address

Country - allows checking which country product should be delivered.
City - a city name, where shipping should be provided.
State/Province - a state name, where shipping should be provided (works only with USA,
Australia, Canada, and other federal-type countries).
Region - a region where shipping should be provided.
Postcode - postal code (precise format depends on country).

Quote

Subtotal - allows checking subtotal (without tax and shipping fees).
Total quantity of products - the total quantity of items ordered in the current Cart.
Total count of products - total number of product titles in current Cart.
Shopping Cart products available for purchase - checks, whether Quote contains products,
eligible, or do not eligible to buy.

Order

Status - current status of Order. List of possible order statuses can be seen at Stores -> Settings ->
Order Status.
Total quantity of products - the total quantity of items ordered in the current Order.
Total count of products - total number of product titles in current Order.
Grand Total - actually paid money amount for current order
Payment Method - payment method, used for current order. List of possible Payment Methods
can be seen at Stores -> Configuration -> Sales -> Payment Methods.
Shipping Method - shipping method, used for the current order. List of possible Shipping
Methods can be seen at Stores -> Configuration -> Sales -> Shipping Methods.
Invoice Created - this condition is Yes, if the invoice is already issued.
Shipping Created - this condition is Yes, if shipping is already created.

Updated At Time - checks, whether Order event triggered at some time point. This condition is
text-based and uses 24-hours clock notation. If you wish to check creation or update time in
Magento notation, use Created At or Updated At conditions.

Wishlist

Total quantity of products - the total quantity of items in the current Wishlist.
Total count of products - total number of product titles in current Wishlist.
Subtotal - total money amount for current Wishlist (the price of each product is multiplied by
item count of its kind, and then all prices summed).

Admin Notifications

Title - the title of admin notifications sent to the current site.
Description - contents of admin notifications, sent to current site. It is text-based condition, so use
contains or does not contain operators.
Severity - importance of notifications. There are the following possible values:

Notice – updates, releases, and other Magento news;
Minor – minor updates and other messages;
Major – important notifications, which you should check shortly;
Critical – vulnerability issues and other most important notifications.

Url - URL, supplied with notification. It is also a text-based condition.
Is Read - whether notification was already read.
Is Removed - whether notification was removed from Inbox.
Date Added - date on which notification was added to the Inbox.

Error

Level - level of throwed error or exception. There are the following possible values, in their
importance order:

Debug
Info
Notice
Warning
Error
Critical
Alert
Emergency

Message - message that describes error. It is a text-based condition, so use contains or does not
contain operators to check its contents.
Backtrace - stack trace of the error. It's also a text-based condition, like above.

Back to Notification creation

Working with Templates
Templates are the basic building blocks of Notifications sent to selected recipients (store admins, for example).

How to Create or Edit a Template

The templates are used together with notification and can contain information about the event.

To edit an existing or create a new template, follow steps below:

1. Open a notification you want to edit.
2. Under the Notification Details section find the field Notification Template
3. Select the required template and press the button Edit Template. A modal window will appear with a

content based on a selected template.
4. Edit required fields and press the button Save - to edit the existing template or Save As New - to create a

new one.

Note

In the message field of a template, you can use all the listed variables. The variable {{event.toString}}``` prints
a default message of the event defined by the system. The variables vary for each event.

Back to Notification creation

Transactional Variables

Depending on the event type used for notification, the following transactional variables are available:

{{event.toString}} - print default event message
{{order.increment_id}} - Order's number

{{order.grand_total}} - Grand total of an order

Useful Info

After the dot character you can specify any field name available in the DB table sales_order
{{wishlist.summary_qty}} - Total quantity of products
{{wishlist.summary_count}} - Total count of products
{{wishlist.subtotal}} - Subtotal
{{customer.confirmation}} - Is Confirmed
{{customer.created_at}} - Created At
{{customer.website_id}} - Associate to Website
{{customer.created_in}} - Created From
{{customer.store_id}} - Create In
{{customer.group_id}} - Group
{{customer.disable_auto_group_change}} - Disable Automatic Group Change Based on
VAT ID
{{customer.prefix}} - Name Prefix
{{customer.firstname}} - First Name
{{customer.middlename}} - Middle Name/Initial
{{customer.lastname}} - Last Name
{{customer.suffix}} - Name Suffix
{{customer.email}} - Email
{{customer.default_billing}} - Default Billing Address
{{customer.default_shipping}} - Default Shipping Address
{{customer.updated_at}} - Updated At
{{customer.dob}} - Date of Birth
{{customer.failures_num}} - Failures Number
{{customer.taxvat}} - Tax/VAT Number

{{customer.gender}} - Gender
{{customer.first_failure}} - First Failure Date
{{customer.lock_expires}} - Failures Number
{{customer.lifetime_sales}} - Lifetime Sales
{{customer.number_of_orders}} - Number of Orders
{{customer.avgsale}} - Average Sales
{{customer.is_subscriber}} - Is subscriber of newsletter
{{customer.subscription_status}} - Newsletter subscription status
{{customer.reviews_count}} - Number of reviews
{{customer.last_activity}} - Last activity (in days)
{{store.lifetime}} - Lifetime Sales
{{store.num_orders}} - Number of Orders
{{product.name}} - Name
{{product.qty}} - Product stock quantity
{{product.activity}} - Activity
{{product.attribute_set_id}} - Attribute Set
{{product.category_ids}} - Category
{{product.category_gear}} - Category Gear
{{product.climate}} - Climate
{{product.collar}} - Collar
{{product.color}} - Color
{{product.eco_collection}} - Eco Collection
{{product.erin_recommends}} - Erin Recommends
{{product.features_bags}} - Features
{{product.format}} - Format
{{product.gender}} - Gender
{{product.material}} - Material
{{product.new}} - New
{{product.pattern}} - Pattern
{{product.performance_fabric}} - Performance Fabric
{{product.sku}} - SKU
{{product.sale}} - Sale
{{product.size}} - Size
{{product.sleeve}} - Sleeve
{{product.strap_bags}} - Strap/Handle
{{product.style_bags}} - Style Bags
{{product.style_bottom}} - Style Bottom
{{product.style_general}} - Style General

Example

In notification associated with order event, to display info of purchased items you can use the code below:

{% for item in order.items %}
 <p>{{ item.name }}: {{ item.price }}</p>
{% endfor %}

Setting Up a Notification

Notification purpose is to send messages to the specified recipients when some certain event has occurred in
your system.

In this context, an event is the certain action of a visitor of your site (e.g., login, registration, placing an order)
or an action of a system (e.g., change order status, cron job execution).

All notifications are located at System -> Event Watcher and Notification -> Manage Notifications section.
There you can edit existing notification, or create a new one.

Event watcher & notification for Magento 2 works for different store views.

How to Create New Notification

Visit System -> Event Watchers -> Manage Notifications and press Add New Notification button to open
creation page. It breaks into two subsequent stages:

1. On the first stage, you need to configure general settings:
Title - name of a notification.
Is Active - activate a notification.
Event - an event which should trigger a notification. They are grouped in the drop-down menu.
Select it and press Continue to proceed to the next stage.

Note
After you had selected the Event, it can not be undone later. You will need to create a new
notification, bound to another event.

2. On the second stage, you need to configure details, which break into two sections:
Notification Details

Recipient - select recipient of a notification.
Notification Template - select existing template or create a new one by editing an existing.
Do not send more than - here you can limit the number of sent messages within a specified
number of minutes. Messages, which exceed this limit will be muted.

Conditions: It allows you to send messages only if the selected conditions are met for the target
event.

3. Make sure that rules are activated and press Save to complete.

Adding Conditions to Notifications

Each notification has Conditions section, where you can set conditions that define when notification should be
sent.

All conditionals should be enclosed in the global mode block. They have four possible global modes of
applying, shown in special header If *[apply mode]* of these conditions are
[validation mode]:

Applying modes define, when rule shall be triggered:

ALL - implies, that rule will be executed only when strictly all conditions were met;
ANY - implies, that rule will be executed only when one or more (but not all) of conditions were met;

Validation modes define, which result can produce each condition to be counted as "met":

TRUE - implies. that conditions should be valid.
FALSE - implies, that conditions should be invalid.

You can also define multiple nested mode blocks by selecting the Conditions Combination option. These
modes allow creating flexible condition sets to satisfy a policy of any complexity.

Once you had selected global mode (or left it as default), press the green (+) button, and pick up a condition
type.

There are many possible conditions, which depend on the every Event field. Here is their list, depending on
event types:

Customer

Is Confirmed - whether the customer is confirmed.
Created At - where the customer was created.
Associate to Website - to which Website customer is associated.
Create In - at which Store customer is registered.
Group - to which Group customer belongs.
Personal Information - such as Gender, First Name, Last Name, Email, Date of Birth and so
on.
Billing and Shipping Addresses - these conditions work with multiline text address
representation, so use contains and does not contain operators for it.
Failures Number - number of last tried failures to login (counts as errors before successful login,
or last fail attempt).
First Failure Date - date of first registered login failure.
Lifetime Sales - total amount, paid for all orders, placed by a customer, and completed.
Average Sales - average amount, which customer pays per order.
Number of Orders - the number of orders that the customer had placed and completed.
Last Activity - checks the last date of customer visit and returns the number of full days from that
date.

Store

Lifetime Sales - total amount, paid for of all orders in the current store.
Number of Orders - the number of all completed orders in the current store.

Admin (User)

Personal Information - such as Username, First Name and Last Name.
Is Active - whether the current admin user is active.
Number of Logins - total number of successful logins of the current user.
Last Login Date - date of the last login of the current user.
number of failed logins - total number of failed logins of the current user.
Admin IP - IP address, from which admin user has been registered.
Is Admin Logged In from a New IP - a special flag, which is set only when an admin user is
logged from IP, other than he used for registration.

Schedule

Job Code - identifier, set as name attribute for <job> tag in /etc/crontab.xml config file
of the module.

Example

Job Code for Message Queue processing task would be mq_process, and can be seen in
/vendor/mirasvit/module-message-queue/src/Mq/etc/crontab.xml config.
Status - the status of the job at the time of cron check. There are the following options available:

Pending - used when the job was just scheduled for execution.
Running - used when the job is running now
Error - used when the job was terminated unexpectedly.
Missed - used, when the job was not executed (for example, queue waiting time was over).
Success - used when the job was executed successfully.

Message - text condition, which allows you to check job results. Use contains and does not
contain operators.
Time Frame Information - such as Created At, Scheduled At, Executed At and Finished At.
Finished Ago - allows to check, how many minutes ago was finished last cron task. Used in
combination with Code to check when was certain task was last executed.
Run Time - allows to check, how much time cron task has consumed.
Last heartbeat time - allows to check, how many minutes ago was executed so-called heartbeat
task. It runs each time with cron started, so using this condition, you can check whether cron
actually runs.

Product

These conditions are used in events of the following event groups: Customer, Shopping Cart, Wishlist,
Review. They break into two large categories:

Product - contains all attributes, defined at Stores -> Attributes -> Product.
Additional Product Conditions - contains two shortcuts, which allow you to track sales of your
top products:

Newest Products is a shortcut to Product is one of [X] most recently
added products is [Yes/No] expression, where X is limit of newly added products
list to check.

Example

If you need to know whether one of your 10 newest products was bought, you need
condition Product is one of 10 most recently added products is
Yes.
Top Selling Products - is a shortcut to Product is one of [X] top selling
products is [Yes/No], where X is also a limit for a list of top-performing products
to check.

Example

Likewise - if you need to know whether one of your top 10 products was bought, you need
condition Product is one of 10 top-selling products is Yes.

Product Special Block

There are two special options used in conditions:

Product Subselection - opens a special block If [ALL/ANY] products in
cart/order matching these conditions:, which can contain one or more Products
condition from category above

This block simplifies complex conditions and makes conditions more logical and readable.
Product Attribute Value Comparison - opens a special block If [Comparison Mode]
[Constant] of [Selection Mode] [Attribute] found while ALL of
these conditions match, which also can contain one or more Products condition from
category above.

This block is quite complex. It allows you to create a collection of products using Products
conditionals. Then, using Selection Mode options Same and Different, you can pick up an
Attribute and compare that attribute value to some Constant. There are three possible
Comparison Modes: Equal To, More than, and Less Than.

Refer to the Examples section to know how these blocks can be properly used.

Shipping Address

Country - allows checking which country product should be delivered.
City - a city name, where shipping should be provided.
State/Province - a state name, where shipping should be provided (works only with USA,
Australia, Canada, and other federal-type countries).
Region - a region where shipping should be provided.
Postcode - postal code (precise format depends on country).

Quote

Subtotal - allows checking subtotal (without tax and shipping fees).
Total quantity of products - the total quantity of items ordered in the current Cart.
Total count of products - total number of product titles in current Cart.
Shopping Cart products available for purchase - checks, whether Quote contains products,
eligible, or do not eligible to buy.

Order

Status - current status of Order. List of possible order statuses can be seen at Stores -> Settings ->
Order Status.
Total quantity of products - the total quantity of items ordered in the current Order.
Total count of products - total number of product titles in current Order.
Grand Total - actually paid money amount for current order
Payment Method - payment method, used for current order. List of possible Payment Methods
can be seen at Stores -> Configuration -> Sales -> Payment Methods.
Shipping Method - shipping method, used for the current order. List of possible Shipping
Methods can be seen at Stores -> Configuration -> Sales -> Shipping Methods.
Invoice Created - this condition is Yes, if the invoice is already issued.
Shipping Created - this condition is Yes, if shipping is already created.

Updated At Time - checks, whether Order event triggered at some time point. This condition is
text-based and uses 24-hours clock notation. If you wish to check creation or update time in
Magento notation, use Created At or Updated At conditions.

Wishlist

Total quantity of products - the total quantity of items in the current Wishlist.
Total count of products - total number of product titles in current Wishlist.
Subtotal - total money amount for current Wishlist (the price of each product is multiplied by
item count of its kind, and then all prices summed).

Admin Notifications

Title - the title of admin notifications sent to the current site.
Description - contents of admin notifications, sent to current site. It is text-based condition, so use
contains or does not contain operators.
Severity - importance of notifications. There are the following possible values:

Notice – updates, releases, and other Magento news;
Minor – minor updates and other messages;
Major – important notifications, which you should check shortly;
Critical – vulnerability issues and other most important notifications.

Url - URL, supplied with notification. It is also a text-based condition.
Is Read - whether notification was already read.
Is Removed - whether notification was removed from Inbox.
Date Added - date on which notification was added to the Inbox.

Error

Level - level of throwed error or exception. There are the following possible values, in their
importance order:

Debug
Info
Notice
Warning
Error
Critical
Alert
Emergency

Message - message that describes error. It is a text-based condition, so use contains or does not
contain operators to check its contents.
Backtrace - stack trace of the error. It's also a text-based condition, like above.

Back to Notification creation

List of Events
Event is a certain action of a visitor to your site (e.g., login, registration, placing an order) or an action of a
system (e.g., change order status, cron job execution).

Events are used in the notifications as a signal for the extension to start sending messages.

Each event has a set of related variables - which can be used in the template and conditions - that are used in
the rules and allow you to set up a notification in such a way as to receive only the messages that interest you.

App Events

Error

This event is triggered when a new error is occurred in your site and allows you to be aware of all
critical errors.

When a new error is occurred by using this event, you can immediately inform your developer on
the need to investigate it. In addition, you can send a message to the support team of a company
that developed the extension, which thrown an error.

Related Conditions for Notifications: Error
Related Variables for Templates:

Note

The Error event has multiple levels, the low-level errors (Debug, Info, Notice, Warning) generate
too many records that are registered by our extension and stored in the DB table mst_event_event.
Therefore in order to avoid the fast overflow of this table, we recommend you observe only high
priority error levels. You can select observed error levels at the global settings of the extension:
System > Event Watcher and Notification > Settings

Admin Events

Admin Logged In

This event is triggered whenever Admin User is logged in to the backend.

You can configure notifications to be sent when admin users use new devices to log in to your
store, or even possible password stealing.

Related Conditions for Notifications: Admin (User)
Related Variables for Templates:

Admin Login Failed

This event is triggered whenever Admin User tries to log in to the backend but failed.

You can configure notifications to be sent when login failures reach a certain limit, so you can
detect a brute-force hacker attack.

Related Conditions for Notifications: Admin (User)
Related Variables for Templates:

Cron Events

Cron job

The event is triggered whenever a new cron job is added to a schedule.

With this event, you can always be aware of failed and long-running cron jobs or be notified when
the cron schedule has stuck and can send notifications to your server admin to handle problems
with cron. Or, you can also automatically contact the support of a company that developed the
extension whose cron job got failed.

Related Conditions for Notifications: Schedule
Related Variables for Templates:

Admin Notification Events

New Notification

The event is triggered whenever your site receives a new Admin Notification. These messages
feature in Magento is used for notifying an admin user about variability issues, security patches,
updates, and other news. Read more about them.

With this event, you can configure the extension to receive only the notifications of a selected
severity, therefore, notifying different staff members about respective problems.

Related Conditions for Notifications: Admin Notifications
Related Variables for Templates:

Product Events

Decreased QTY

The event is triggered whenever a product quantity is decreased. This event allows you to be
aware, when product stock quantity falls below the threshold, and to notify responsible staff on the
need to replenish the warehouse.

Related Conditions for Notifications: Product
Related Variables for Templates:

https://www.atwix.com/magento-2/add-admin-notification-message/

Product View

The event is triggered when a product is viewed by a registered customer. This rule can be used
for tracking down the interest in specially promoted products, or some experimental goods.

Related Conditions for Notifications: Product, Customer, Store.
Related Variables for Templates:

Customer Events

Customer Logged In

The event is triggered whenever a customer logs in to the store.

Related Conditions for Notifications: Customer, Store.
Related Variables for Templates:

Customer Logged out

The event is triggered whenever a customer logs out of the store.

Related Conditions for Notifications: Customer, Store.
Related Variables for Templates:

New Customer Sign up

The event is triggered when a customer is registered in your store.

Related Conditions for Notifications: Customer, Store.
Related Variables for Templates:

Customer Birthday

The event is triggered whenever a customer has a birthday.

Note
This event is fired at 00:00 of the day of the customer's birth.

Related Conditions for Notifications: Customer, Store.
Related Variables for Templates:

Newsletter Events

Newsletter subscription

The event is triggered when a customer subscribes to the newsletter.

Related Conditions for Notifications: Customer.

Related Variables for Templates:

Newsletter unsubscription

The event is triggered when a customer cancels the subscription to the newsletter.

Related Conditions for Notifications: Customer.
Related Variables for Templates:

Subscription status change

The event is triggered when a customer enables or cancels the subscription to the newsletter.

Related Conditions for Notifications: Customer.
Related Variables for Templates:

Shopping Cart

Abandoned Shopping Cart

The event is triggered when the shopping cart was not updated in a reasonable period, or customer
logged off but did not place an order. Criteria for such a cart can be configured at Stores ->
Settings -> Configuration -> Dotmailer -> Abandoned Carts.

Related Conditions for Notifications: Customer, Store, Product Special Blocks, Quote,
Shipping Address.
Related Variables for Templates:

Order Events

Order status was changed

The event is triggered whenever the order is saved to apply some changes (it includes placing an
Invoice or Shipping documents).

Related Conditions for Notifications: Customer, Store, Product Special Blocks, Order,
Shipping Address.
Related Variables for Templates:

Order obtained 'XXX' status

Our extension features a set of generic Events, which act as a shortcut to Order was changed
event with a check of Order status. These events have similar names as shown in the header (
Order obtained 'Complete' status, for example), and trigger, whenever Order
receives particular status.

Related Conditions for Notifications: Customer, Store, Product Special Blocks, Order,
Shipping Address.
Related Variables for Templates:

Review Events

New review was added

This event is triggered whenever a new Review is added (but before Approvement).

Related Conditions for Notifications: Customer, Store, Product Special Blocks, Product.
Related Variables for Templates:

Review has been approved

This event is triggered whenever a new Review is approved and displayed in the store.

Related Conditions for Notifications: Customer, Store, Product Special Blocks, Product.
Related Variables for Templates:

Wishlist Events

Product was added to wishlist

This event is triggered whenever a new product is added to the customer's wishlist.

Related Conditions for Notifications: Wishlist, Customer, Store, Product Special Blocks,
Product.
Related Variables for Templates:

Wishlist was shared

Note
Did you not find an event for your needs? Contact our support team, and we will be glad to help you.

Event Log
Event Log is a special Grid, which holds all registered notifications sent to recipients with respective
information on each event.

It is a great tool for analyzing store performance.

The grid provides the following data:

Identifier - a type of event, which triggered the notification
Info - the detailed info, sent to recipients
Created At - the date of the event triggering
Updated At - the date of notification sending (typically should be equal with Created At).

Troubleshooting

You do not receive messages

In order to send messages, the extension starts a background process, which runs continuously. It listens
for the new registered events and sends notifications.

This background process is launched by cron, and it requires the function exec to be enabled to run it.

However, you won't be able to receive the messages if this function is disabled. So, in that case you can
ask your server admin to enable the PHP exec function or just add the cron job below to the server
crontab:

* * * * * <path to php binary> <magento install dir>/bin/magento mirasvit:message-queue:subscribe > /dev/null 2>&1

How to upgrade the extension
To upgrade the extension, follow these steps:

1. Backup your store's database and web directory.
2. Login to the SSH console of your server and navigate to the root directory of the Magento 2 store.
3. Run command composer require mirasvit/module-notificator:* --update-

with-dependencies to update current extension with all dependencies.

Note

In some cases, the command above is not applicable, or it's not possible to update just the current
module, or you need to upgrade all Mirasvit modules in a bundle. In this case, the command above will
have no effect.

Run instead composer update mirasvit/* command. It will update all Mirasvit modules
installed in your store.

4. Run command php -f bin/magento setup:upgrade to install updates.
5. Run command php -f bin/magento cache:clean to clean the cache.

6. Deploy static view files

rm -rf pub/static/*; rm -rf var/view_preprocessed/*; php -f
bin/magento setup:static-content:deploy

Disabling Extension

Temporarily Disable

To temporarily disable the extension please follow these steps:

1. Login to the SSH console on your server and navigate to the root directory of the Magento 2 store.
2. Run command php -f bin/magento module:disable Mirasvit_Notificator to

disable the extension.
3. Log in to the Magento backend and refresh the store cache (if enabled).

Extension Removal

To uninstall the extension, please follow these steps:

1. Login to the SSH console on your server and navigate to the root directory of the Magento 2 store.
2. Run command composer remove mirasvit/module-notificator to remove the extension.
3. Log in to the Magento backend and refresh the store cache (if enabled).

Change Log

1.5.1

(2024-10-21)

Fixed

Fixed the issue with the error: Undefined array key 'message'

1.5.0

(2024-08-21)

Fixed

Rendering PHP code removed from templates for security reasons

1.4.5

(2024-08-15)

Fixed

Fixed the issue when the Mirasvit_Email module is not installed (Impossible to process constructor
argument Parameter [#4]() [Mirasvit\Email\Repository\TriggerRepository $triggerRepository] of
Mirasvit\Event\Event\Product\ViewEvent class)

1.4.4

(2024-05-23)

Fixed

Fixed the issue with notifications with multiple recipient sent to one email

1.4.3

(2024-05-14)

Fixed

Fixed the issue with saving checkout fields in the admin panel (Amasty_Checkout)

1.4.2

(2024-01-10)

Fixed

Fixed the issue with the error 'Message has been rejected: Deprecated Functionality: Implicit conversion
from float ... to int loses precision'

1.4.1

(2023-01-13)

Fixed

Fixed possible issue 'preg_split(): Compilation failed: regular expression is too large'

1.4.0

(2022-08-16)

Improvements

Support of Magento MQ

Fixed

Console command return value

1.3.2

(2022-07-12)

Improvements

foreign keys to handle deletions of entities

1.3.1

(2022-06-20)

Improvements

remove db_schema_whitelist.json

1.3.0

(2022-05-31)

Improvements

Migrate to declarative schema

1.2.0

(2022-03-15)

Fixed

PHP 8.1 compatibility
Magento versions support - 2.3, 2.4

1.1.1

(2021-09-28)

Fixed

confilct with Mageplaza_Smtp

1.1.0

(2021-07-15)

Fixed

fixed the issue with cron notifications not sent

1.0.47

(2021-01-29)

Fixed

Fixed dependencies

1.0.46

(2020-10-23)

Fixed

added module compatibility with the php 7.4

1.0.45

(2020-09-23)

Fixed

Fixed issue with not able to edit templates for notifications in Magento 2.4.0 ([#54]())

1.0.44

(2020-09-10)

Fixed

Fixed conflict with Mageplaza_Smtp module ([#52]())

1.0.43

(2020-09-09)

Fixed

Fixed issue with creating new channel in Magento 2.4 ([#50]())

1.0.42

(2020-08-26)

Fixed

Magento 2.4 compatibility ([#47]())

1.0.41

(2020-07-30)

Improvements

Support of Magento 2.4

1.0.40

(2020-03-16)

Code improvements

1.0.39

(2019-11-01)

Improvements

Notification levels

1.0.38

(2019-10-28)

Fixed

Compatibility with Magento 2.3.3 mail system

1.0.37

(2019-10-16)

Fixed

Issue with slow error level detection

1.0.36

(2019-10-03)

Fixed

Issue with incorrect data displayed after removing filters

1.0.35

(2019-05-23)

Improvements

PHP Template Processor

1.0.34

(2019-05-14)

Fixed

Issue with message formatting (with enabled HTML minification)

1.0.33

(2019-05-02)

Fixed

Issue with blocking cache clearing during save configuration

1.0.32

(2019-04-30)

Improvements

New Transport: HTTP Request

1.0.31

(2019-03-20)

Fixed

Error sending wishlist and helpdesk test notifications

1.0.30

(2019-03-20)

Fixed

Error sending test notifications

1.0.29

(2019-02-08)

Fixed

Error blocking Magento installation

1.0.28

(2019-02-05)

Improvements

Add store name and url variables to templates

1.0.27

(2019-01-31)

Improvements

Log request URI for error events

1.0.26

(2019-01-22)

Improvements

New Order notification formatting (Slack)

Fixed

Order notifications not sent via telegram (since 1.0.22)

1.0.25

(2019-01-18)

Fixed

Notifications with HTML not sent via telegram

1.0.24

(2019-01-18)

Fixed

Order notifications not sent via telegram (since 1.0.22)

1.0.23

(2019-01-18)

Improvements

Slack notifications
Notifications

Fixed

Test notification error message

1.0.22

(2019-01-17)

Improvements

Notifications

1.0.21

(2018-12-21)

Fixed

Error during executing cron job (since 1.0.19)

1.0.20

(2018-12-20)

Improvements

Ability to use Magento directives/variables in email templates, e.g. include default email header and
footer

Documentation

More info about variables

1.0.19

(2018-12-10)

Improvements

Ability to use own order attributes

1.0.18

(2018-11-29)

Improvements

M2.3 support

Documentation

Install required libraries

1.0.17

(2018-07-20)

Fixed

Issue with FK keys

1.0.16

(2018-04-23)

Improvements

Do not display rules on first step of notification creation

Fixed

Do not show error in notification listing if event does not exists

1.0.15

(2018-02-09)

Improvements

Register only active events mirasvit/module-event#9

1.0.14

(2018-02-05)

Bugfixes

Fix error during deploy of Magento Cloud Edition

Improvements

Ability to use nested variables in templates

1.0.13

(2018-01-25)

Improvements

Allow to use the new line character for Email transport

1.0.12

(2018-01-18)

Improvements

Performance improvement: in cron job check only events registered by cron

1.0.11

(2018-01-11)

Bugfixes

Error installing module for M2.2.2

1.0.10

(2017-12-01)

Improvements

CLI command to send notification for event ID from Event Log

1.0.9

(2017-11-30)

Fixed

Ignore event if it does not exist anymore

Documentation

Troubleshooting: messages are not sent

1.0.8

(2017-11-27)

Documentation

Extension documentation

1.0.7

(2017-11-27)

Fixed

Ignore recipients in the notification chain that do not exist anymore

1.0.6

(2017-11-23)

Fixed

Do not use keyword Test in the filename

1.0.5

(2017-11-20)

Improvements

Support of php > 7.0

1.0.4

(2017-11-09)

Fixed

Extra parameter passed to parent construct

1.0.3

(2017-11-02)

Improvements

Use event handler to register error events instead of plugin
Move error event from module-event and add ability to disable error reporting

Documentation

Add basic docs

1.0.2

(2017-10-30)

Features

Integrate with MQ

Fixed

Error 'Area code already set'

1.0.1

(2017-10-26)

Fixed

Issue with CLI commands

1.0.0

(2017-10-18)

Fixed

Reset previous transport before creating a new one
Correct installation data

